Race, Genomics, and Society

The field of genetics has been at the forefront of discourse concerning the concept of “race” in humans. This course explores human history, human variation, human identity, and human health through a broad range of enduring and emerging themes and challenging questions related to race and genetics (and now, genomics) on a global scale. Students will acquire knowledge and skills required for integrative analysis of the relevant scientific, ethical, legal, societal, cultural, and psychosocial issues.

Genome Technologies

Comprehensive overview of genome science technologies, analytical tools, clinical applications, and related issues. Exposure to a range of technologies currently used in research and some in clinical practice, as well as the tools to interrogate the large data-sets generated by these technologies. Projects will explore the range of datasets publicly available and analysis of genomic datasets. Prerequisites: Biology 201L

Marine Ecology of the Pacific

Ecology of the rocky intertidal, kelp forest, and mud flat habitats. Introduction to marine mammals, fish and other large West Coast vertebrates. Taught in Beaufort, with preparation for fieldwork before and analysis and presentation of projects after required one-week intensive field experience on the coast of Northern California. Prerequisite: Introductory course in Biology or Environmental Science and consent of instructor. Instructor: Johnson

Coalenscence and Evolution

Survey of theoretical and empirical aspects of modern population genetics in the post-coalescence era. Coincident with the development of coalescence theory, evolutionary biology began a profound and pervasive transformation. This course presents the basics of coalescence theory. It builds upon this perspective to address an array of summary statistics and inference methods developed for the analysis of genomic data. Instructor: Uyenoyama

Primate Evolutionary Genetics

Genetic perspectives on primate evolution. Interpretation of molecular data in understanding primate origins, historical and present-day distributions, and natural selection. Topics include: the genetic signature of pathogen pressure; population differentiation and local adaptation to ecological differences; genetic signatures of admixture, including in the human lineage; molecular marker-based tests of kin-biased behavior and paternal care; primate behavioral genetics and genomics; phylogenetic methods to investigate the evolution of primate social structures; conservation genetics.

Deep-Sea Science and Environmental Management

Explores ecosystems in the deep sea, including fundamental aspects of geology, chemistry, and biodiversity;behavioral, physiological, and biochemical adaptations of organisms (primarily invertebrate, but may include microbial and vertebrate components) to deep-sea benthic and bentho-paelagic environments will be introduced. Students will gain an understanding of the ecosystem services of the deep sea; issues in deep-sea environmental management arising from exploitation of deep-sea resources will be discussed. For undergraduates only.

Plants and People

The history of humans is deeply intertwined with plants. We depend on them for food, fuel, beverages, medicine, textiles, shelter, and trade. This course explores the evolutionary diversity of plants across the Green Tree of Life and their importance to people through time, the history of their domestication, their current roles in our society, and in our ecosystems. Includes laboratory investigations and scheduled field trips.


Introduction to diversity and biology of amphibians and non-avian reptiles. Emphases on their evolutionary history, including the relationships among the major taxonoic groups and to other taxa. Topics include evolutionary adaptations with regard to life history, physiology, behavior. Human interactions and other species conservation. Examples from North Carolina and the Southeastern US will be used whenever possible. Laboratory activities, field projects, required and optional field trips. Prerequisite: Biology 202L or equivalent.

Developmental Biology

Mechanisms of fertilization, control of cell divisions, diversification of cell types, organization and differentiation of cells and tissues of the organism, and patterning necessary to establish the body plan of many organisms including vertebrates, invertebrates and plants. Included among these mechanisms are the roles of transcription factors in controlling the trajectories toward tissues, signal transduction, morphogenetic movements, and other mechanisms used by different plants and animals to build a functional adult.

Gateway to Biology: Genetics and Evolution

Introduction to principles transmission genetics and evolution. Includes Mendelian and non-Mendelian inheritance, quantitative genetics, genetic mapping, evidence for evolution, natural selection, genetic drift, kin selection, speciation, molecular evolution, phylogenetic analysis. Relevance to human family and social structure, evolution of infectious disease, human hereditary disorders, social implications of genetic knowledge. Taught in Beaufort. Instructor: Schultz