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Abstract 

Bacteriophage therapy is a niche antimicrobial technique that has recently gained significant interest 
due to the emergence and rapid spread of multidrug-resistant bacterial pathogens. Unlike many 
chemical antibiotics, which can be active against a broad spectrum of bacterial targets, phages often 
need to be assembled into polyvalent cocktails consisting of ten or more unique phage isolates to 
achieve a level of breadth that is consistent with other modern antimicrobials. Although previous 
studies have documented several cases of synergistic and antagonistic interactions between competing 
phage strains, little is known about how prevalent these interactions are, or about how significantly 
they influence the efficacy of therapeutic cocktails. Here, I undertake a systematic in vitro 
characterization of pairwise interactions among a set of naturally-isolated phages using high-
throughput combinatorial growth profiling. Notably, these experiments reveal a diverse array of 
synergistic and antagonistic phage interactions, suggesting that a rational cocktail design framework 
that optimizes these interaction networks (“iNets”) could improve the antimicrobial efficacy of phage 
cocktails. Using a simple regression model incorporating the results of pairwise phage screening 
experiments, I thus identify higher-order cocktails that minimize mutual antagonism and maximize 
synergy. This work demonstrates that phage interactions are important mediators of phage cocktail 
efficacy and illustrates the power of interaction-centric optimization platforms in enhancing the 
efficacy of polyvalent phage preparations.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



3 
 

Introduction 

The emergence and rapid spread of multidrug-resistant bacterial pathogens suggests that a “post-

antibiotic era” is approaching (CDC, 2013; Kåhrström, 2013). Antibiotic resistant infections account for 

roughly 23,000 deaths per year in the United States and 25,000 in Europe (CDC, 2013; Group, 2009), and 

the direct economic burden of these infections is estimated to exceed $55 billion in the U.S. alone (Smith 

& Coast, 2013). In addition, industrial investment in antibiotic research and development has declined 

steadily due to diminished corporate returns resulting from antimicrobial resistance (AMR)-related 

government restrictions (Power, 2006) on top of rising costs due to a dearth of novel drug targets (Butler, 

Blaskovich, & Cooper, 2013; Power, 2006; Projan, 2003). Efforts to curb the spread of resistance have 

primarily been concentrated in the discovery of new antibiotic classes as well as public awareness 

campaigns promoting the responsible use of antibiotic drugs (CDC, 2013). However, despite these efforts, 

AMR is predicted to worsen in the coming decades, perhaps even to surpass cancer as a leading cause of 

mortality by 2050 (O’Neil, 2014).  

Motivated in part by the difficulty to discover new antibiotic classes, there has recently been a revival 

of interest in alternatives to traditional chemical antibiotics. Biomolecular approaches (biologics)—most 

notably, antimicrobial peptides and bacteriophages (bactericidal viruses)—are of particular interest due to 

their natural abundance and diversity (Lakshmaiah Narayana & Chen, 2015). In addition, screening for 

biologics is often higher throughput than antibiotic discovery, making isolation procedures much more 

economical (Lakshmaiah Narayana & Chen, 2015; Loc-Carrillo & Abedon, 2011). A recent spike in novel 

classes of antimicrobial biologics (Bishop et al., 2017; Tucker et al., 2017) suggests that there remains a 

high degree of untapped potential for future development in this area. 

One of the most promising of the antimicrobial biologics is the use of bactericidal viruses—

bacteriophages—as antimicrobial products. Phage therapy offers a number of potential advantages over 

traditional antibiotic therapy.  
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• Phages are remarkably abundant and diverse in the immediate environment, meaning that phage 

isolation is often a trivial procedure. It is thought that all living bacteria are affected by phage 

predation in the environment (Suttle, 2005). 

• Clinical phage preparations exhibit “auto-dosing”, a phenomenon in which therapeutic doses 

increase throughout the infection cycle due to natural phage replication (Stephen & Cameron, 

2010). Phages’ ability to replicate improves the pharmacodynamic properties of phage-based 

antimicrobials.  

• Phage resistance is considered significantly more manageable than antibiotic resistance. This is 

because phages “coevolve” with their hosts to overcome resistant phenotypes, so ineffectual phages 

(i.e. those that are no longer active in the face of resistance) can be easily “reactivated” via simple 

laboratory evolution experiments (Betts, Vasse, Kaltz, & Hochberg, 2013; Torres-Barcelo & 

Hochberg, 2016).  

• Finally, phages exhibit remarkably narrow target specificity, often evolved to infect only a handful 

of bacterial strains (Hyman & Abedon, 2010; Skurnik, Pajunen, & Kiljunen, 2007). In contrast to 

broad-spectrum antibiotics that target a wide range of species—often including favorable human 

microsymbionts—phages are capable of waging pinpoint attacks on pathogenic bacteria while 

leaving mutualists unaffected. As a result, phage therapy consistently yields fewer side effects than 

antibiotic therapy (Carlton, 1999).  

But the high target specificity of therapeutic phages is, from a clinical standpoint, both a positive and a 

negative. On one hand, it confers an ability to eliminate pathogens without harming mutualists; however, it 

also limits the spectrum of pathogenic hosts that any particular phage can conceivably treat. For this reason, 

phage-based antimicrobial preparations have classically taken the form of polyvalent phage cocktails 

containing between two and 50 or more distinct phage isolates (Chan, Abedon, & Loc-Carrillo, 2013). 

Well-designed cocktails have broader host ranges than monovalent phage preparations because cocktails 

complement the host ranges of all phages contained within. Although cocktails are more likely to harm 
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favorable human microflora (in a similar manner as broad-spectrum antibiotics), the broadened collective 

host range of cocktails is often preferable in clinical settings because it eliminates the need for strain-level 

knowledge about each infection. Whereas single-phage preparations need to be personalized for each 

patient, cocktails are much more generalizable.  

The process of designing and constructing phage cocktails has classically assumed a standardized 

approach, passed down from early pioneers in microbiology (Chan et al., 2013; Kutateladze & Adamia, 

2008). Starting from panels of highly virulent phage candidates, the set of phage candidates chosen for use 

in a cocktail is that which maximizes their collective host range. Newer cocktail design strategies enhance 

cocktails by slowing the arrival of resistant mutants (Gu et al., 2012). Notably, little effort has been devoted 
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to rationally designing cocktails on the basis of collective therapeutic efficacy or potency (beyond starting 

with maximally virulent phage candidates), especially through the lens of phage interactions.  

Molecular-scale interactions between coexisting phages are rarely considered whilst designing 

phage cocktails, because such interactions have historically been considered rare and/or negligible. 

However, there exist a number of reported examples of nontrivial phage interactions (Ghisotti, Zangrossi, 

& Sironi, 1983; Hattman & Hofschneider, 1967; Johnson, Widner, Xin, & Feiss, 1991; Lindahl, Sironi, 

Bialy, & Calendar, 1970). Despite these examples, little effort has been devoted to better understanding 

how prevalent phage interactions are, as well as if they appreciably influence the therapeutic efficacy of 

phage cocktails. In this study, I delved to address this shortcoming by asking whether phages from natural 

or commercial sources influence antimicrobial efficacy when combined in vitro. To do this, I first 

assembled a novel phage panel against a clinically-relevant pathogen (Burkholderia cepacia) by isolating 

phages from the environment. I then utilized an automated high-throughput screening platform to culture 

B. cepacia in the presence of two phages at a time (in a pairwise fashion) and compared the cell inhibition 

of the combination treatments to those of the corresponding single-phage assays. These data then enabled 

direct inferences of synergy and antagonism for all phage pairs in my library. I hypothesized that this 

experiment would reveal a complex network of phage-to-phage interactions (iNet) which significantly 

influences antimicrobial efficacy.  

I next suggested that optimizing iNets—i.e. selectively removing antagonistic interactions and 

retaining synergistic interactions—could be a high-potential avenue for improving the antimicrobial 

efficacy of phage cocktails. Because my experimental platform was limited to pairwise data (in other words, 

it would become impossible to exhaustively test all n-membered cocktails), I first sought a quantitative 

method to predict the antimicrobial efficacy of n-membered cocktails using knowledge of two-membered 

cocktails. Borrowing from previous studies on combination therapy optimization (Wang et al., 2015; Wood, 

Nishida, Sontag, & Cluzel, 2012; Zimmer, Katzir, Dekel, Mayo, & Alon, 2016), I implemented a regression 

algorithm which I hypothesized would be able to effectively predict the cell inhibition of any cocktail 
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assembled using my B. cepacia phage panel. I further hypothesized that this algorithm would allow me to 

identify improved cocktails with optimized iNets, laying the foundation for a novel interaction-based 

optimization strategy for bacteriophage cocktails.  
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Results 

A novel phage library against B. cepacia  

To better understand the interactions that exist between phages, I first delved to isolate a novel library of 

phages against the multidrug-resistant pathogen Burkholderia cepacia. After undergoing phage 

enrichments using sewage water samples taken from three wastewater treatment plants in the 

Durham/Chapel Hill area (see Methods for in-depth isolation procedure), I isolated a total of 15 novel 

phages with diverse characteristics (Table S1). Host range analyses revealed that these phages exhibited 

varying host generality and were able to successfully form plaques on confluent lawns of anywhere between 

one and fourteen B. cepacia strains each (of 22 originally tested). These phages formed primarily non-

haloed pinhole plaques on bacterial lawns, suggesting an abundance of large, non-LPS-degrading phages. 

In addition, four of the fifteen phages formed turbid plaques on all B. cepacia hosts, indicating possible 

abortive infection by the bacteria or lysis from without (Abedon, 2011). Finally, timecourse infection 

experiments revealed that all fifteen phages in this library were able to inhibit the growth of B. cepacia in 

liquid culture (Fig. 2), indicating that these phages represent fifteen novel antimicrobial agents against 

multidrug-resistant B. cepacia.  
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An automated, high-throughput screening platform for studying phage interactions  

In order to more efficiently quantify phage interactions, I designed and implemented a high-throughput 

screening platform capable of testing more than 12,000 cocktail candidates in a single run. This level of 

throughput is necessary for combinatorial screens, because the number of experiments necessary to 

exhaustively test the interactions in a library of drug candidates increases exponentially with the number of 

drugs in the library. Due to the large number of necessary experiments, this platform emphasized a “hands-

off” design which integrated a Matlab-based protocol generator, an automated liquid handler, a plate-

transferring system, a photometric plate reader, and a battery of software tools to assist in analysis (Fig. 

S2).  

Phages exhibit complex networks of synergy and antagonism in vitro. 

I hypothesized that networks of phage interactions within cocktails influence antimicrobial efficacy. To test 

this, I began by assessing between-phage interactions within my newly-isolated B. cepacia phage library. I 

leveraged my automated screening platform to undertake a series of pairwise culturing experiments, in 

which a B. cepacia strain was exposed to two distinct phages at a time in a pairwise fashion (Fig. 3A). The 

resulting lysis curves were documented and compared to similar curves produced by single-phage infection 

assays, and synergy/antagonism was captured in a metric called the combination index (CI). CI values 

above 1 represent synergy and CI values below 1 represent antagonism.  

My pairwise phage infection experiment revealed a surprising amount of diversity in pairwise interactions 

within my library of B. cepacia phages (Fig. 3B). Although many interactions clustered around a CI of 1 

(representing independence), indicating that these phages did not significantly interact in vitro, most phage 

pairs veered into the realms of either synergy or antagonism. This result suggests that interaction-blind 

cocktails—such has been the status quo in the field of phage therapy for more than 100 years—are likely 



10 

to be non-optimal, because antagonistic interactions that limit the efficacy of the cocktail are likely to exist 

within them.  

Interaction networks (iNets) can be optimized to improve phage cocktail efficacy 

I next delved to develop a framework with which to leverage interaction networks (iNets) to design more 

effective phage cocktails (Fig 4A). Because exhaustive screening of all possible higher-order cocktails 

would be experimentally intractable, I first sought to validate a method to infer the effects of higher-order 

cocktails using pairwise interaction data. Using a regression model demonstrated previously, I first 

simulated the antimicrobial efficacies of all possible higher-order cocktails containing phages in my B. 

cepacia phage library. Sorting the outputs and plotting in barplot format (Fig. 4B), we can see that cocktails 
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are predicted to exhibit dramatic differences in antimicrobial efficacy based on iNet characteristics. Plotting 

the predicted efficacy of the full, naïve cocktail (i.e. the cocktail containing all phages and antibiotics 

screened in Fig. 3B), I found that this cocktail is far from the most effective; in fact, it is ranked 14,729 out 

of 16,000 in my simulation. This suggests that there is significant room for optimization based on phage 

interactions. I next sought to validate my quantitative platform experimentally by selecting six cocktails 

and testing their efficacies (Fig. 4C). Although the algorithm in its current form is a non-perfect estimator 

for higher-order cocktail efficacy, I did achieve a positive correlation between predicted and actual efficacy, 

implying that this computational method could be useful for identifying the most effective cocktail 

candidates.  
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Discussion  

Previous phage cocktail development procedures have not taken phage interactions into account 

because such interactions were assumed to be rare and/or negligible. This study demonstrates that 

networks of interactions among competing phages in polyvalent cocktails are significant mediators of 

antimicrobial efficacy and should be considered whilst designing such cocktails. The discovery of 

abundant antagonistic interactions among wild phages suggests that previous phage cocktails, which 

were largely designed to extend target specificity, may contain incompatible phages which limit their 

overall antimicrobial efficacy. My work thus suggests that large, interaction-blind phage cocktails—

which have constituted the status quo of clinical phage therapy for a century—are likely to be non-

optimal and should be revisited.  

In addition, my iNet optimization procedure represents a novel pipeline with which to optimize 

combination therapies involving phages. Like previous optimization platforms (Wood et al., 2012; 

Zimmer et al., 2016), my approach overcomes the scalability problem associated with combinatorial 

screening because it collapses the antimicrobial efficacy of complex cocktails down to a set of pairwise 

interactions, which are significantly more tractable when screening in the laboratory. In addition, my 

optimization approach is blind to the mechanism of action of the antimicrobial mixture being tested, 

allowing for the development of cocktails containing diverse phages of varying modes of infection. 

This perk also suggests that it could be used to optimize combination therapies involving other drug 

classes (i.e. non-phages), or even mixtures between different drug classes. For example, this method 

could leverage phage-antibiotic synergy (PAS)—a phenomenon which has previously only been 

identified on a case-by-case basis (Comeau, Tétart, Trojet, Prère, & Krisch, 2007; Kamal & Dennis, 

2015)—to develop highly-synergistic combination therapies involving both phages and small-

molecule antibiotics. This could aid in the incorporation of phage therapy into the current antimicrobial 

industry in the U.S., which has historically been dominated by antibiotics.  
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Finally, drug cocktail optimization approaches like the one presented here could herald a new general 

approach to antimicrobial therapy—one which incorporates information about each patient’s 

individual pathogen strain. Because phages likely interact in a host-specific manner (i.e. synergistic 

phages in one host background could antagonize one another in a different host background, and vice 

versa), iNet optimization is largely pathogen-specific, and thus patient-specific. This method therefore 

underscores a new basis for personalized medicine, a concept which has gained significant traction 

over the past several decades (Jameson & Longo, 2015).  

 

 

 

Finally, my discovery of diverse phage-to-phage interactions also poses significant implications for 

our understanding of microbial ecology. Phages are thought to be the most abundant and diverse 

biological entities on the planet (Suttle, 2005), and phage predation is a vital force for global carbon 

turnover by serving as a major cell fate for bacterial populations, one of the most significant carbon 

reservoirs (Suttle, 2005; Weinbauer, Chen, & Wilhelm, 2011; Wilhelm & Suttle, 1999). The forces 

that mediate the efficacy of phage predation in natural environments, therefore, is of great ecological 

significance. This study suggests that phage-to-phage interactions should be considered whilst studying 

the ecological interplay between bacteria and their viral parasites and raises new questions into how 

Fig. 5. Proposed pipeline for the development of personalized phage preparations using iNet optimization. Pathogens of 
interest are screened against libraries of previously-isolated phage particles in a pairwise fashion. Using the resulting lysis 
profiles, phage/phage interactions can be inferred, after which optimal higher-order combinations can be computed. This results 
in “designer” cocktails containing optimized iNets.  
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significantly such interactions affect natural microbial population structures, carbon turnover, and 

global climate.  

Future Directions 

My iNet optimization approach, in its current form, is purely based on laboratory screening and does 

not incorporate any information about mechanisms of action. Although my mechanism-free approach 

allows me to identify clinically effective combination therapies containing agents from diverse drug 

classes, the user will be left without any novel biological insights about the molecular interactions that 

account for synergy and antagonism. I thus envision this platform as a valuable first step in studying 

the mechanisms of drug interactions, in that it can identify drugs or sets of drugs that may be interesting 

to dissect further on a mechanistic level. Thus, one future direction for this work could be to examine 

the sets of phages in my B. cepacia phage library that exhibited significant interactions, and to undergo 

a more detailed characterization of the cellular and molecular mediators of these interactions. Such 

experiments could help to provide a biological interpretation of the iNets I uncovered experimentally 

and could even lead to novel approaches with which to engineer iNets for specific applications.   

In the future I also intend to expand the generality of my iNet optimization procedure. Because this 

work was contained to B. cepacia, it is currently unknown whether this approach could be applied to 

other pathogens. I will thus assemble phage libraries against other clinically-relevant pathogens—such 

as multidrug-resistant Enterobacteriaceae or MRSA—and attempt to develop optimized phage 

cocktails using iNet optimization. 

Finally, my platform optimized cocktails solely on the basis of cell inhibition, but this is only one of 

many factors that might be considered whilst designing a combination therapy. The next version of my 

optimization platform could incorporate other information, such as the speed of resistance 

accumulation, the length of the latency period before cell inhibition occurs, the number of drugs in the 
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cocktail, and the relative doses of each drug (my current approach assumes all drugs are added at equal 

doses). Incorporating these additional factors into the optimization algorithm may enable the 

development of even more finely-tuned combination therapies.   
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Materials & Methods 

Phages, strains & growth conditions 

Novel B. cepacia phages were isolated from influent sewage water samples taken from three wastewater 

treatment plants in the Research Triangle region of North Carolina (Mason Farm Wastewater Treatment 

Plant, Chapel Hill, NC; North Durham Water Reclamation Facility, Durham, NC; South Durham Water 

Reclamation Facility, Durham, NC). These samples were pooled before undergoing phage enrichments via 

standard procedures (Van Twest & Kropinski, 2009). Clonal phage preparations were isolated from mixed 

enrichments by serially picking plaques showing distinct morphologies on a confluent bacterial lawn. High-

titer phage stocks (> 109
 PFU/mL) were prepared from clonal phage preparations using plate lysates (also 

according to standard procedures) and were stored in tryptic soy broth (TSB; Sigma-Aldrich 22092) with 

1% chloroform. A total of 10 B. cepacia complex (BCC) strains, including 5 B. multivorans, 3 B. 

conocepacia, and 2 B. vietnamiensis strains—all of which are recent cystic fibrosis pulmonary isolates 

(isolated either from sputum or airway aspirates)—were used as hosts during phage isolation. Overnight 

BCC cultures were prepared by inoculating 2 mL of TSB with a single colony and allowing the cells to 

grow for 16 h at 37°C with agitation (to roughly 4 x 109
 CFU/mL).  

See table S1 in the supplemental information for more detailed information about strains and phages. 

Pairwise synergy screens 

To screen for antimicrobial synergy among phages, I utilized combinatorial pairwise phage infection 

experiments. Overnight cultures underwent a 100-fold dilution before being infected with two phages to an 

MOI of 0.001 per phage (multiplicities were kept low to avoid complete cell lysis). Cultures were grown 

overnight with shaking at 30°C, and OD600 measurements were taken at intervals of 15 minutes. Results 

of these experiments were compared with a negative control (no phage) as well as single-phage baselines 

(i.e. a repeat of the growth assay with a single phage infection).  
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To exhaustively screen all phages within each strain background in a pairwise manner, I implemented a 

high-throughput experimental platform capable of running over 9,000 growth experiments in parallel (fig. 

S2). My platform integrates experimental setup, execution, and analysis; first, plate maps were generated 

and converted to a format compatible with the Formulatrix Mantis liquid handler system; the Mantis then 

filled 96-, 384-, or 1536-well plates with the specified assays; growth profiles were then generated using a 

Tecan Infinite M200 plate reader, with plate parallelization supported by a Tecan Freedom EVO robotic 

system; finally, results were analyzed and interaction networks (iNets) generated. The software tools I 

developed for generating plate maps and Mantis protocols, as well as generating iNets, can be found here: 

https://github.com/jkreitz/cmb-phage-screening. This platform was used during both iNet characterization 

and optimization.  

Quantifying synergy and constructing iNets 

In accordance with previous literature (Foucquier & Guedj, 2015), I define synergy as the state in which 

two phages exert a combined effect that is beyond independence (Bliss, 1939). Using cell survival (S; 

approximated using OD600) as a metric of phage efficacy, I thus define a combination index (CI) which 

captures the strength of an interaction into a single metric. When computing cell survival, I integrate the 

OD curve over the entire experimental timecourse in order to account for heterogeneous lysis profiles. 

 

Under this model, the null hypothesis would be a scenario in which two phages A and B exhibit a CI of 1; 

in other words, they exert antimicrobial effects independently of one another. However, phage pairs with 

CI greater than 1 exhibit synergy—the cells exhibit less survival than would be expected given the null 

hypothesis of independence—and phage pairs with CI less than 1 exhibit antagonism.  
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https://github.com/jkreitz/cmb-phage-screening
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iNet optimization 

To estimate the efficacy of higher-order cocktails using knowledge of pairwise interactions (represented as 

an iNet), I used a simple regression model (Wang et al., 2015). Regression was used in place of a physical 

model in order to expand the application space of this optimization approach; in other words, this regression 

model is blind to mechanisms of action and therefore remains applicable to virtually any drug type. This 

regression model contains two primary components: single-order terms (represented by single-phage 

efficacies) and combination terms (captured by the inverse of CI values). This model ignores higher-order 

terms, however previous studies have found such terms to be negligible compared to first- and second-order 

terms (Al-Shyoukh et al., 2011; Wood et al., 2012). This model (eq. 3) then simplifies to a simple relation 

between the efficacies of single phages and the interactions between those phages (eq. 4).  
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Supplemental Materials 

 

Designation Original host strain 
Host range  

(% strains infected) 
Plaque morphology 

ΦBcep1 B. multivorans C130A 42 1 mm pinhole 

ΦBcep2 B. multivorans C130C 52 0.25 mm pinhole 

ΦBcep4 B. multivorans AU34941 5 0.1 mm pinhole 

ΦBcep5 B. multivorans AU34941 33 1.5 mm pinhole 

ΦBcep8 B. multivorans AU34905 66 0.1 mm pinhole, turbid 

ΦBcep9 B. vietnamiensis AU34701 5 0.2 mm pinhole 

ΦBcep9-2* B. vietnamiensis AU34701 Not tested 0.6 mm pinhole/0.2mm halo 

ΦBcep10 B. vietnamiensis AU34747 5 1 mm pinhole 

ΦBcep10-2* B. vietnamiensis AU34747 5 1.3 mm pinhole 

ΦBcep10-3* B. vietnamiensis AU34747 5 2 mm pinhole 

ΦBcep11 B. multivorans AU34924 33 0.2 mm pinhole, turbid 

ΦBcep12 B. cenocepacia AU34124 5 0.2 mm pinhole, turbid  

ΦBcep12-2* B. cenocepacia AU34124 5 0.5 mm pinhole 

ΦBcep12-3* B. cenocepacia AU34124 5 0.9 mm pinhole 

ΦBcep13 B. cenocepacia AU34124 Not tested 0.8 mm pinhole 

ΦBcep14 B. cenocepacia AU33928 66 0.15 mm pinhole, turbid 

ΦBcep15 B. cenocepacia AU34108 24 0.25 mm pinhole, turbid 

ΦBcep17 B. cenocepacia AU34124 Not tested 0.2 mm pinhole, turbid 

ΦBcep18 B. cenocepacia AU34124 5 0.2 mm pinhole 

Table S1. Novel B. cepacia phage library used during cocktail optimization experiments. All phages were 
isolated from influent sewage water from wastewater treatment plants in the Durham-Chapel Hill area. 
Note: plaque-mutants are identified with asterisks.   
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Table S2. Outline of the screening platform developed during this project to assist in combinatorial phage 
infection assays. It emphasized automation to reduce technical variability and to increase throughput.  

Software-generated 
plate maps 

Automated liquid 
handler 

Robotic plate transfer 
system + photometric 

platereader 

 

Growth profiles 
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