
Tracing the origins of antimalarial resistance in Plasmodium vivax  
 
 
 

INTRODUCTION 
 
 
Plasmodium vivax is a malaria parasite with an immense global burden. Although infections are 
commonly treated with antimalarial drugs, resistance alleles have arisen throughout Southeast 
Asia and South America that threaten global efforts toward malaria eradication. The mechanisms 
and attributes of these alleles have been well-documented in its sister species P. falciparum, but 
little is known about the characteristics of positively selected alleles in P. vivax. In particular, 
few studies have addressed the global distribution of resistance alleles and the scenarios under 
which they may have arisen. To investigate the origins of selected regions in P. vivax, we 
assembled whole genome sequences from 148 Southeast Asian samples and identified 
genetically distinct populations within them. We applied a series of tests for positive selection 
both across all populations and within individual populations and pinpointed several previously 
unidentified selected regions with putative functional significance. To better understand the 
dispersal of positively selected alleles, we produced haplotype networks and found that selected 
alleles appear to have propagated broadly across Southeast Asia. Collectively, we determined 
that selected traits are generally not associated with extended haplotype blocks, which suggests 
that these alleles originated from standing variation rather than recent mutations. We expect our 
insights to inform strategies toward P. vivax elimination, since a more robust understanding of 
the origins of antimalarial drug resistance could shed light on their equilibrium in the face of new 
selective pressures.   
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INTRODUCION 

Plasmodium vivax, like its sister species P. falciparum, is a parasitic protozoan that 

causes malaria in humans. Although the biological features, transmission patterns, and genetics 

of antimalarial drug resistance in P. falciparum have become much clearer in recent years, far 

fewer studies have explored these characteristics within P. vivax. This is due to its low mortality 

and a lack of—until very recently—a robust P. vivax blood stage culturing system [1, 2]. 

Nonetheless, over 2 billion people across the globe are at risk for P. vivax infection, which can 

result in serious conditions such as severe anemia, thrombocytopenia, and low birth weight [3-8].    

Geographically, P. vivax is endemic primarily to Southeast Asia and South America. Its 

transmission in Africa is limited to the Horn of Africa and Madagascar, unlike P. falciparum [8]. 

The differing geographic environments, climates, and topographic features within each of these 

subcontinents have consequently given rise to significant diversification within the P. vivax 

genome. Across Southeast Asia in particular, migration patterns (due to refugee movements, 

migrant work patterns, and/or deforestation) have led to the highest intraspecific variation across 

all global P. vivax populations. 

The proliferation of P. vivax whole genome sequencing in recent years has expanded 

upon these underlying characterizations of geographic populations, refining our understanding of 

how local populations of P. vivax may be established and evolve independently. For instance, a 

recent survey of selection within South American samples demonstrated that the current genetic 

diversity observed across the continent could be a product of multiple migration waves from the 

Old World that have outcrossed since their arrival [11]. In Southeast Asia, an analysis of whole 

genome sequences across the region found 40 single nucleotide polymorphisms (SNPs) that were 
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highly differentiated between Western Thailand and Western Cambodia, suggestive of regional 

adaptation [12].  

The case for population genetics as a tool for strategic malaria containment is more 

compelling in the context of antimalarial drug resistance. First line treatments for uncomplicated 

P. vivax generally involve the antimalarials chloroquine and primaquine in combination—both 

chosen for their synergistic properties as well as concerns over growing chloroquine resistance 

[13, 14]. The expansion of antimalarial resistance in Asia has also contributed to the adoption of 

arteminism combination therapies (ACTs), which are aimed at minimizing drug resistance and 

maintaining clinical efficacy during treatment [15]. However, the adoption and deployment of 

these protocols varies widely by region. For instance, a combination therapy of sulfadoxine and 

pyrimethamine was first introduced in Thailand in 1973 for P. falciparum infections and is 

believed to be the source of several unique selective signatures in both P. vivax and P. 

falciparum [12, 16]. On the other hand, the country of Papua New Guinea uses primarily the 

antimalarial primaquine toward treatment of infection [17]. Since mutations that confer 

antimalarial resistance are key drivers of malaria evolution, a more comprehensive overview of 

the differences between these alleles within subpopulations will undoubtedly be immensely 

beneficial toward efforts to eliminate the disease. 
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Although many SNPs associated with drug resistance in P. vivax have been previously 

identified through genome-wide scans of selection, the majority of these analyses have been 

cursory, with minimal emphasis on mapping the haplotypes associated with such alleles. Along 

these lines, the geographic trajectories and population-level frequencies of these alleles remain 

poorly understood, unlike characterizations of antimalarial resistance in P. falciparum [18, 19]. 

Furthermore, although some facets of multidrug resistance in P. vivax have been linked to 

transcriptional regulation in the past, there has never been an attempt to map signatures of 

selection that fall outside of protein-coding regions to epigenetic marks, a technique which could 

shed light on how regulatory regions might confer a fitness advantage [20]. 

 

In our analysis, we explore three possibilities for the rise and transmission of antimalarial 

resistance genotypes or other selected alleles (Figure 1A). In the first, selected variants originate 

once, independent of population, yet rapidly propagate toward fixation across all populations. In 

the second, variants which provide antimalarial resistance originate from independent 

populations and are transmitted exclusively within their host population (Figure 1B). In the final 

scenario, mutations associated with antimalarial resistance occur recurrently at the same locus 

and are transmitted across all populations (Figure 1C). An additional layer of complexity 

A) B) C) 

Figure 1: Scenarios depicting the propagation of antimalarial resistance alleles. Red dots represent samples with a mutation which provides drug 
resistance while green dots are wild-type samples. Panel A, a mutation associated with drug resistance originates once and spreads across multiple 
populations. In Panel B, resistance alleles originate independently in populations and propagate almost entirely within their originating population. Our 
third scenario, outlined in Panel C, includes multiple origins of resistance mutations that are transmitted across populations. 
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underlying these scenarios comes from the question of whether selected drug resistance 

mutations have risen in frequency from standing genetic variation or are of more recent origin. 

A growing body of research suggests that reduced malaria transmission can lead to higher 

inbreeding and increased linkage disequilibrium [21, 22]. These factors have been shown to 

maintain loci linked to antimalarial resistance in equilibrium, which could disrupt elimination 

efforts and exacerbate current resistance trends. Consequently, a more robust understanding of 

which scenarios of resistance allele transmission operate within populations of P. vivax would be 

beneficial for predicting how specific elimination strategies might impact or aggravate the 

balance of resistance alleles distributed throughout independent populations. Our inferences 

could also have applications in genome-wide association studies (GWAS) linking reduced rates 

of parasite clearance to putatively selected genetic variants. If there exist multiple haplotypes that 

are associated with selected variants, it may become easier to identify causal SNPs for a 

particular phenotype or to characterize markers associated with antimalarial resistance.  

To build on the current global understanding of P. vivax population genetics and drug 

resistance, we have assembled and analyzed 148 whole genome sequences (WGS) of P. vivax 

from Southeast Asia, the most representative collection of samples compiled to date. Leveraging 

this multi-population data, we have identified several selective markers unique to particular 

populations as well as broader signatures of selection. For several alleles, we present haplotype 

networks and associated statistics that may be indicative of the spread of selected alleles across 

populations. Broadly, our results provide the necessary groundwork for future studies to further 

delineate how selected alleles have originated and subsequently propagated across populations. 
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METHODS 

Preparation of variants 

We acquired WGS of P. vivax from three previously published studies [12, 20, 23]. 

However, not all of these samples demonstrated 

sufficient coverage to be used in our analyses. To 

determine which samples were appropriate for the 

purposes of our study, we first aligned all samples to 

the PVP01 P. vivax reference genome with bwa mem 

and called variants using HaplotypeCaller from the 

GATK suite [24-26]. Our choice of using the PVP01 

reference over the older Sal1 was based on both its 

high quality as well as its origin from Papua New 

Indonesia, which is much more geographically 

proximal to our samples compared to El Salvador, 

where Sal1 was sourced. After examining this initial 

call set, we chose to discard samples with fewer than 

80% of variant sites genotyped. 

Since P. vivax is a non-model organism with no gold standard variant set with which to 

calibrate variant filtering, we next adapted best practices suggested by the developers of GATK, 

performing four steps of Base Quality Score Recalibration. These sample-specific variants were 

then coalesced into a single, master variant set using the GATK tool GenotypeGVCFs, excluding 

any indels and only retaining SNPs. From these samples, we again removed those featuring less 

than 80% of sites genotyped across the genome. Notably, these variants were processed as 

Figure 2: A summary of our pipeline to 
identify variants. The first five of our steps 
were adopted from previously published 
best practices. Our hmmIBD and dEploid 
steps enabled us to correct heterozygous 
genotype calls for haploid samples.
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originating from a diploid organism rather than a haploid organism in order to characterize 

mixed infections, as we later describe.  

We performed several steps to trim down our variants into a high-confidence set. First, 

we filtered out any variants that were localized within repetitive regions of the P. vivax genome, 

as these are often sources of error in variant calling. Our candidate repetitive regions were 

obtained using the tool dustmasker with default settings [27]. Additionally, we filtered any 

variants that were within PIR or VIR genes—a set of genes that are highly repetitive in 

sequence—as they are similarly prone to genotyping errors [20]. We also filtered variants that 

were called in less than 90% of our samples or had greater than one alternate allele, since most 

genomic analysis tools are designed to accommodate a maximum of only two alleles. 

Furthermore, we removed variants that were supported by less than 1% of all reads at that locus 

or variants that were supported by less than 10 reads in total, as was suggested by a prior malaria 

study conducted on a similar scale [28]. These steps removed variants that were relatively rare in 

our samples and thus had a higher likelihood of being false positives. We designated the resultant 

variants as being of high-confidence and used them for the purposes of our analyses. A summary 

of our pipeline is depicted in Figure 2.  

Detecting clonal isolates 

 Although the P. vivax genome is haploid throughout its residence in the human body, 

sequencing efforts for blood samples of P. vivax have frequently identified diploid sequences or 

other, higher forms of ploidy. These results can be attributed to multiple infections of P. vivax 

within a single host. Since the presence of multiple infections could have confounded our 

population genetic analyses, we performed a series of steps to correct for this possibility and 

ensure that the variants associated with our samples featured only a single P. vivax isolate. 
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 We first clustered each of our samples by their country of origin and then applied the tool 

hmmIBD—which is optimized to pinpoint tracts of identity-by-descent in haploid species—

within each population to identify which samples were most closely related to each other [29]. 

We next constructed a panel for each sample, derived from its ten most closely samples as 

identified by hmmIBD. The panels were then processed by the tool dEploid, a recently-developed 

program to deconvolute Plasmodium mixed-infection isolates based on haplotype representation 

[30]. These calculations provided us with isolate proportions within each sample based on the 

sample’s genotyping. If there existed an isolate within each sample with a proportional 

representation of 70% or more, we modified that sample to reflect only the majority isolate’s 

genotype. If there were no isolates within a sample whose haplotypes were represented in a 

proportion greater than 70%, we discarded that sample from our later analyses.  

Characterizing population structure 

 After filtering our variants and identifying mixed infections, we performed a series of 

analyses to detect basic population structure. We used the R package SNPRelate to conduct a 

principal components analysis on our SNPs, filtering them for linkage disequilibrium based on 

an r2 value of 0.5 [31]. In addition, we identified the population relatedness between each group 

using the tool ADMIXTURE, similarly filtering SNPs using an LD threshold of 0.5 [32]. To 

determine the best K value denoting the number of population clusters, we performed ten-fold 

cross-validation for our several runs of admixture. We used the population clusters identified 

through the PCA and ADMIXTURE in our later analyses, as these clusters were largely 

concordant with geographic origin.  

 Since LD is frequently associated with selective sweeps, we characterized the extent of 

LD present within the P. vivax genome. We determined LD decay across populations through the 
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program PopLDdecay [36]. To identify haplotype blocks, we first applied the program 

Haploview with a 20,000 base pair window surrounding selected sites using default parameters 

[37]. We additionally used the PLINK software package—which performs functions similar to 

Haploview—using a minimum r2 parameter of 0.2 [38].  

Identifying signatures of selection within and across populations 

 We used the program selscan to calculate the nSL statistic for our variants [39]. These 

results were normalized using a tool included in the selscan package. Since we were unable to 

ascertain which of our alleles were ancestral or derived, we used the absolute values of these 

statistics for the purposes of our analyses, as was done in a prior study [20]. We also calculated 

the H12 statistic—which is optimized to pinpoint soft selective sweeps that might be missed by 

other methods—with scripts provided by Nandita Garud [40].  

 Notably, out of all the selection statistics commonly used, only the nSL statistic does not 

require a recombination map, which has not yet been identified for P. vivax. Furthermore, nSL 

also has been demonstrated to be effective at identifying soft selective sweeps on standing 

genetic variation in addition to hard selective sweeps [41]. Given these two advantages, we chose 

the nSL results to be our primary reference point for experiments involving selection. We 

calculated these statistics across all populations as well as between populations, choosing nSL 

score cutoffs as 99.9th percentile for the entire variant set. To determine if sample size might bias 

nSL results between populations, we performed a permutation test in which we determined the 

likelihood of recovering a similar set of candidates for selected variants using a reduced sample 

size compared to a larger size.  

 

 



 9 

Determining transmission characteristics of selected variants and drug resistance alleles 

 We employed several approaches to better understand the nature of haplotypes associated 

with positively selected variants across populations. First, we performed TCS network analyses 

around variants of interest, with window sizes of 40,000, 20,000, 10,000, and 2,000 base pairs 

[42]. These networks were visualized using the software package popart [43]. Additionally, we 

used the software package associated with the H12 statistic to cluster haplotypes—an approach 

that had been previously deployed for analyses of soft selective sweeps in Drosophila and 

domesticated dogs—using window sizes of 400, 200, 100, and 50 SNPs [40, 44].  

 We also performed pairwise comparisons of the haplotypes surrounding selected loci in 

individual samples to infer similarity, with a maximum of 2 missing sites. Using window sizes 

ranging from 500 to 5000 base pairs, these pairwise comparisons were then processed with the 

DASH algorithm, which leverages shared sequence identity to infer identity-by-descent 

haplotype clusters [45]. Furthermore, we employed the hierarchical clustering-based UPGMA 

algorithm to develop phylogenetic trees for sequences surrounding selected variants, as 

suggested in a prior malaria study [41, 46].  

Characterizing the epigenetic landscape of P. vivax isolates 

 To answer whether the epigenetic makeup of P. vivax was under selection, we 

downloaded ChIP-seq data from a study surveying histone modifications within P. vivax 

sporozoites [47]. We aligned reads from that data using bamtools and called histone peaks using 

the MACS2 software suite with the broad peaks option [48, 49]. Collectively, we were able to 

ascertain whole genome profiles for the histone marks H3K9ac, H3K4me3, and H3K9me3. 
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RESULTS 

 Although we originally inferred genotypes across 281 samples for analyses, our dEploid 

correction and filtering protocol reduced this set to 148 samples. These samples originated across 

the Southeast Asian countries Myanmar, Thailand, Cambodia, Vietnam, Malaysia, and Papua 

New Guinea (PNG). Through our variant calling approach, we were able to identify 271,334 

high-confidence variants, which we continued with in our later analyses. In our PCA, we 

characterized three 

major population 

clusters, with 2.68 

percent of the genetic 

variation captured by 

the first eigenvector 

and 1.89 captured by 

the second (Figure 

3A). We classified these clusters as the Myanmar-Thailand (MT), Cambodia-Vietnam (CV), and 

Malaysia-PNG (MP) populations, respectively. We found Fst between MT and CV to be 0.03 CV 

and MP as 0.11, and MT and MP to be 0.15. 

 Since it was possible that our use of sequence data from three different experiments could 

have biased our variant calling strategy through batch effects, we also labelled our PCA using the 

experiments from which samples were derived. We found that samples derived from different 

experiments but localized to the same country largely overlapped, with the partial exception of 

Thai samples (Figure 3B). To validate the clustering suggested by our PCA, we identified 

clusters through ADMIXTURE (Figure 4). Using 10-fold cross-validation, we determined that 

A) B)

Figure 3: Principal components analysis of 148 P. vivax samples across Southeast Asia. Samples were filtered 
for linkage disequilibrium and subjected to PCA. Panel A depicts samples by their country of origin and demonstrates 
that they are differentiated largely based on their region of origin. In Panel B, samples are labelled by the experiment 
in which they were originally sequenced to verify that batch effects did not biased our genotyping process.
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the appropriate cluster size for our samples was K=3, with the constituent members in agreement 

with those suggested by our PCA analysis.  

 We initially performed the nSL test across the entirety of our samples as well as 

individually, within populations. However, since 

the MP population contained significantly fewer 

samples than the other two populations, we used a 

permutation test to determine whether population 

size influenced the nSL test’s ability to recover 

selected sites. We found that a sample size of 

14—the extent of the MP population—was not 

sufficient to recover most selected sites in the two 

larger populations (p=0.0). Consequently, we 

only included samples from the MP population 

when determining selected sites across all 

populations, excluding it for the rest. A Manhattan plot of selected regions across both all three 

populations is shown in Figure 5A.  

 Of these sites, 19% of the 99.9th percentile SNPs were found to be missense, protein-

coding mutations. Within the MT and CV populations, we found 25% and 21% of highly 

selected SNPs to be missense mutations, respectively. Notable genes close to or directly 

implicated in these selected sites that have previously gone unreported included karyopherin 

alpha, which plays a major role in nuclear import, and GPI ethanolamine phosphate transferase 

1, implicated in posttranslational modification pathways.  

Figure 4: ADMIXTURE plot of population clusters. Using 
the program ADMIXTURE, we identified three 
high-confidence populations across our sample set. These 
included the Myanmar-Thailand (MT), Cambodia-Vietnam 
(CV), and Malaysia-PNG (MP)populations. Each line 
represents a single sample while the proportions of blue, 
green, and red represent the proportions of MT, CV, and MP 
ancestry identified within each sample, respectively.
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 Using Hudson’s Fst statistic, we also identified sites that appeared to be differentially 

selected between the Cambodia-Vietnam and Myanmar-Thailand populations. Notable genes 

implicated in or 

associated with these 

regions included histone-

arginine 

methyltransferase 

CARM1, which could 

facilitate epigenetic 

adaptations to specific 

environments, and CCR4-

associated factor 1, which has a fundamental role in coordinating the expression and egress of 

parasite invasion proteins [50]. A Manhattan plot depicting values with high Fst differentiation 

between the Cambodia-Vietnam and Myanmar-Thailand populations is shown in Figure 5B. 

  We examined LD within our populations 

and found that it was extremely low (Figure 6). 

In Myanmar-Thailand, LD decayed to an r2 of 0.1 

on average within 180 base pairs, while in 

Cambodia-Vietnam it decayed to the same 

amount within 170 base pairs and in Malaysia-

PNG within 2600 base pairs. We subjected 

several our candidate selected SNPs and their 

encompassing genomic regions to haplotype block 

A) B)

Figure 5: Manhattan plots of whole genome scans for selection and population differentiation. 
Panel A identifies the top 99.9th percentile of genomic sites across all samples which displayed 
evidence of selection based on the nSL statistic. Panel B depicts sites the top 99.9th percentile of 
sites that are highly differentiated by the Fst statistic between the Cambodia-Vietnam and 
Myanmar-Thailand populations.  

Figure 6: Average decay of linkage disequilibrium across 
populations. Decay within the Myanmar-Thailand and 
Cambodia-Vietnam populations is rapid (~200 bp to reach 0.1) while 
it is slightly stronger in Malaysia-PNG (~2600 bp to reach 0.1).
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analysis with Haploview and PLINK. However, Haploview was unable to identify any significant 

haplotype blocks within these regions. Although PLINK did produce estimations of haplotype 

block size, the majority of its estimates included haplotype blocks of only several hundred base 

pairs. Moreover, most of its estimates did not include our positively selected SNPs of interest 

within haplotype blocks.  

 We applied several approaches in an attempt to identify distinct or similar haplotype 

backgrounds associated with selected alleles. First, we developed haplotype networks around 

putatively selected variants. For variants that were largely fixed across all populations, we 

largely found no evidence that the haplotypes bearing these alleles were clustered by population 

(Figure 7A; Figure 7B). 

For variants that were 

associated with high nSL 

scores but were not 

entirely fixed across all 

populations, we found that 

selected variants largely 

clustered together, 

regardless of the window 

size used to construct each 

network (Figure 7C). 

Although it cannot be 

ruled out that these 

variants were the result of recurrent mutations, their clustering implied a singular origin of the 

Figure 7: TCS haplotype networks for selected variants. The haplotypes depicted are 10,000 base 
pairs in length, centered around the selected allele. Panel A, we include the haplotype network for the 
variant LT635619_377458—which has largely reached fixation—with labellings corresponding to 
population of origin. Panel B includes this same network, but with labels presenting both the major and 
minor alleles. Panels C and D display similar networks for the selected variant LT635616_1046912, 
which has not yet reached fixation. Notably, both selected alleles do not display any major 
population-level organization in their networks.

B)A)

C) D)



 14 

alleles observed. Moreover, both the major and minor alleles did not display any evidence of 

population-specific clustering (Figure 7D). These results largely suggest that selected variants 

do not remain exclusive to individual populations but instead appear to propagate widely.  

 The software package associated with the H12 statistic is capable of both identifying 

regions under selection as well as clustering haplotypes at a particular locus. Despite using 

multiple window sizes for this analysis, we were unable to identify any candidate variants that 

had potentially been subjected to soft selective sweeps. Using the H12 clustering tool, we found 

that haplotypes featuring selected alleles did not appear to be significantly differentiated from 

those without, implying that most selected variants within the P. vivax genome are not captured 

by extensive selective sweeps, hard or soft.  

 We further confirmed 

this interpretation by using 

the DASH algorithm, which 

clustered haplotypes based on 

their pairwise distance. 

Samples which featured 

selected alleles largely 

clustered together in multiple 

independent clusters. 

However, our ability to 

definitively determine 

whether the members of each 

cluster were genetically related was hindered because many clusters overlapped in their 

A) B)

Figure 8: UPGMA tree of a missense mutation selected for in a histone acetyltransferase. 
The minor allele is depicted in blue with bracketing, while the rest represent samples featuring 
haplotypes with the major allele. Some clades have been collapsed for clarity. Panel A depicts 
the phylogenetic relationship amongst haplotypes encompassing 40,000 base pairs around the 
major and minor alleles, while Panel B depicts the relationships of 2,000 base pair haplotypes. 
Although minor allele haplotypes appear to have originated independently in Panel A, these 
haplotypes largely coalesce in Panel B, thus limiting any conclusions.   
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constituent members. Notably, however, almost all haplotype clusters identified through DASH 

featured members from different populations, supporting the notion that selected alleles do not 

remain sequestered to distinct populations but instead are found distributed throughout all.  

  Additionally, we performed UPGMA phylogenetic clustering on our putatively selected 

variants since this phylogenetic method incorporates hierarchical clustering. Although several 

haplotypes associated with selected variants appeared to cluster independently when analyzing 

trees encompassing 40,000 base pairs around these variants, we found that these clusters 

coalesced when comparing trees associated with smaller, 2,000 base pair windows. In agreement 

with our prior analyses, we did not find any clusters that exclusively featured a single population, 

regardless of window size (Figure 8). Although our analysis through this approach cannot 

entirely rule out independent origins of these mutations, these results in conjunction with prior 

evidence suggest that mutations which display evidence of selection do not occur recurrently. 

Moreover, the short length of haplotype blocks surrounding selected SNPs suggest a scenario in 

which selection began to act on standing variation after it had a chance to rise to intermediate 

frequency and to spread throughout multiple populations. 

 We also mapped selected alleles to regions associated with sporozoite epigenetic 

modification. However, we were unable to identify any regional overlap. This particular finding 

could suggest that mutations within P. vivax regulatory regions have not undergone any strong 

selection. Given our limited dataset on epigenetic modification, however, we believe a more 

plausible explanation is that our underlying data is insufficient to infer any conclusion.  
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DISCUSSION  

 Our study provides several promising avenues for future research that could have 

widespread applications for developing elimination strategies across the globe. These findings 

also imply that improvements in methodology are necessary for continued research in P. vivax. 

One particular advantage of our study is that we applied the HaplotypeCaller algorithm from 

GATK to call variants, as opposed to UnifiedGenotyper. While the latter has been used 

extensively in prior studies of P. vivax, HaplotypeCaller is better suited at calling variants in 

close proximity to each other, as suggested by its documentation. Given the extensive genetic 

variation previously observed for P. vivax and in our study, we believe this new approach could 

be more effective for the purposes of genotyping [11, 51].  

 Our study also represents the first attempt to use the dEploid tool to correct for polyclonal 

infections within P. vivax samples. Given the unique relapse nature of P. vivax, it was 

unsurprising to find that 124 of our original 281 samples were too mixed to be properly 

deconvoluted, in line with prior estimates in the region [12, 20, 23]. Furthermore, the dEploid 

package was powerful by enabling us to properly identify the correct genotype for high-

confidence haploid samples in which heterozygote calls were made. Although future 

experimental work through single-cell sequencing of Plasmodium parasites may one day make 

tools such as dEploid obsolete, their capacity to ascertain the genotypes of mixed infections is 

valuable by reducing the degree to which samples are discarded because they are mixed, a 

frequent limitation for population genetic studies of malaria [52].  

 Our estimates for population differentiation and structure are in agreement with prior 

studies. Just as Hupalo et al. identified CV samples to be more closely related to MT samples 

than to MP samples, our inclusion of a wider set of samples from Thailand and Cambodia 
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through Parobek et al. and Pearson et al.’s studies suggested a similar story. The large 

differentiation we observed between Cambodia-Vietnam and Malaysia-PNG is surprising since 

the two populations are in close geographic proximity. Moreover, we expected to find a larger 

differentiation between the Cambodia-Vietnam and Myanmar-Thailand populations. Although 

Cambodia borders Thailand on the west, a malaria-free corridor found in the middle of Thailand 

has been suggested to reduce the transmission of P. vivax and P. falciparum isolates between 

Western Thailand—which is beyond the malaria-free corridor—and Cambodia [53]. Given this 

limitation to gene flow, we were surprised to find a lack of substantial isolation by distance. 

 Since we used samples sequenced across several independent experiments, it was 

important to determine whether sample ascertainment influenced genetic differentiation. 

However, as depicted in our PCA plot, samples derived from independent experiments within 

Cambodia showed no major genetic differentiation, supporting our strategy to integrate WGS 

from independent experiments together. One notable exception were samples from Thailand, 

which demonstrated a partial degree of differentiation upon PCA. However, we determined that 

the samples in the Hupalo et al. study were ascertained from a different geographic region of 

Thailand compared to those sequenced in the Pearson et al. study. Since P. vivax in Thailand has 

been previously demonstrated to carry strong population substructure largely based on 

geography, we attribute this observed split in our PCA to sample location rather than sequencing 

bias [54].   

 Because our study incorporated significantly more samples than used in prior analyses of 

P. vivax WGS data, we found multiple previously-unidentified signatures of selection, many of 

which were located within functionally important genes. These data could prove valuable as 

potential targets for vaccine development or strategies toward future antimalarial development. 
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In the future, we plan to verify some of these candidates by checking their degree of selection in 

South American populations, since it is likely that they will be selected for there was well based 

on similar selective pressures. 

 Our results investigating haplotype architecture suggest that selected alleles have become 

widespread throughout populations rather than remaining sequestered exclusively within a single 

population. Furthermore, we determined that the majority of selected alleles likely originated 

once rather than recurrently. Additionally, the lack of the lack of large haplotype blocks around 

selected SNPs suggests that the haplotypes associated with selected traits are the product of 

selection on standing genetic variation rather than recent mutations. However, there are several 

caveats to our conclusions. Since the UPGMA algorithm assumes constant rates of molecular 

evolution across all clades, it has been demonstrated to be susceptible to systematic error in 

forming clades [58]. As such, our results in using that analysis to characterize single versus 

multiple origins could have been influenced by that same bias. Moreover, none of our analyses 

were specifically powered to detect the timeline of origin for our variants. Consequently, we plan 

to incorporate several more experiments to further support our conclusions. 

 First, we intend to determine the properties of migration and effective population size 

between our identified populations using the tool MIGRATE-N [55]. This analysis will better 

equip us to understand the extent to which gene flow occurs between our populations and 

whether the expansion of selected alleles falls in line with or exceeds population-wide 

expectations. Additionally, we expect to perform experiments comparing the allele frequency 

spectrums of each population using the tools Moments and δaδi to determine how recent or 

ancient demographic events may have influenced the spread of selected alleles, or in the case of 

selection on standing variation, their spread before selection [56, 57].  



 19 

 Furthermore, we will use the coalescent-based software packages argweaver and RENT+ 

to infer fine-grained genealogies associated with the selected traits we have identified [59, 60]. 

Since these programs are equipped to identify small regions of recombination that may go 

undetected by more mainstream tools, we expect they will be better suited relative to the 

UPGMA algorithm to determine whether mutations associated with selected alleles have 

occurred recurrently. Moreover, they may also reveal whether selected alleles were founded on 

standing genetic variation versus recent de novo mutations, based on the characteristics of their 

associated phylogenetic tree and estimates for the time to most recent common ancestor 

(TMRCA).  

  Finally, we believe incorporating samples from South America will improve our capacity 

to determine the genetic origins and transmission dynamics of selected alleles within Southeast 

Asia. Since populations of P. vivax across South America remain relatively isolated, prior studies 

have demonstrated that its samples exhibit more extensive linkage disequilibrium and identity-

by-descent relative to samples from Southeast Asia [11, 23, 51]. These particular properties have 

likely given rise to more stable and longer haplotypes for alleles under selection. Thus, 

populations from South America could provide a valuable model under which to compare 

haplotype backgrounds for selected alleles within Southeast Asia. Furthermore, samples from 

South America might offer a window into how selected alleles within Southeast Asian 

populations might respond to reduced gene flow and parasite transmission across borders.  
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